こんにちは。NRI 向後と申します。 この度、Solafuneで開催された「衛星画像から太陽光パネルを検出するコンペティション」に参加しました。 再生可能エネルギーの普及が進む中、太陽光パネルの正確な設置場所や設置領域を把握することはエネルギー供給の計…
こんにちは、NRI システムデザインコンサルティング部 高橋です。 本投稿ではFederated Learningについてご紹介します。 目次 1. 背景と課題 2. Federated Learningの概要・技術要素 3. ビジネスへの活用と事例 4. NRIの取り組み 5. まとめ 1. 背景と課題 近…
10/20(金)に大阪で開催された「関西Kaggler会2023秋」に参加してきました。 このようなKagglerの集まるオンサイトでのイベントに参加したことはこれまでなく、一体どのような会なのだろうと、期待半分、不安半分で参加しました。(前月に開催された関東Kaggl…
こんにちは。NRI マーケティングサイエンスコンサルティング部の松下東子です。 本記事ではNRI独自の調査アンケートである「生活者1万人アンケート」を活用した価値観クラスタリングの事例第2弾をご紹介します。今回は、皆様の職場に加わってくる若手社員が…
データサイエンティストの田村です。Kaggleで2023年5月に終了した「AMP®-Parkinson's Disease Progression Prediction」において参加1,805チーム中3位となり、ソロ金を獲得できました。私自身はまだまだKaggle初心者ではありますが、本記事ではコンペティシ…
こんにちは。NRIデジタル データサイエンスの柴です。2022年11月~2023年1月の期間でNishikaで開催されていた「睡眠段階の判定 〜”睡眠の深さを判別しよう”〜」コンペ(以下、睡眠コンペ)に、同じくNRIデジタル データサイエンスの滝口さんと松崎さんと柴の…
NFT Price Prediction Challenge(road to "Appraiser" of digital art) Hello everyone, we are Naohiro Manabe, Ryuichi Kikkawa, Kazuteru Hirahara, and Ryo Nakai, data scientists of the NFT analysis team from Nomura Research Institute, Japan. "…
こんにちは。NRI CXコンサルティング部の平原一輝/松井拓郎です。 本記事ではNRI独自の調査アンケートである「生活者1万人アンケート」を活用した価値観クラスタリングの事例についてご紹介します。特にお金持ちの価値観の違いに基づいて、どのような行動特…
時系列のクラスタリングとアンサンブル 鈴木雄大, 池野心平, サトヤキ・ロイ こんにちは、NRIの時系列予測チームの鈴木です。 第4弾までの記事で、iterativeモデルとglobalモデルを導入し、それぞれ優れた点があることを紹介しました。 今回は第5弾として…
Satyaki Roy, Shimpei Ikeno, and Yuta Suzuki Global ML-powered methods such as Gradient Boosted Trees for time series Why do we need global models? In the last blog post, we saw how to train and forecast individual time series data and aggr…
サトヤキ・ロイ 池野心平 鈴木雄太 GBTなどの機械学習を用いたグローバルモデルでの時系列予測 なぜグローバルモデルが必要なのか 皆さんこんにちは。NRIの時系列予測チームのデータサイエンティスト、Satyakiです。今回も時系列モデルについて、機械学習(ML…
こんにちは。NRIデジタルの奥山です。 2022年10月までKaggleで開催されていた「RSNA 2022 Cervical Spine Fracture Detection」コンペ(以下、RSNA2022)に、NRIデジタルの大崎さんと奥山、そして社外の方1名を加えた計3名のチームで参加し、883チーム中10位…
はじめに この記事はKaggle Advent Calender 2022の17日目の記事です。 今回初めてKaggle Advent Calendarを書かせていただきます。最近、Kagggle Community Competition機能を使った内輪コンペを開催する機会があり、その際に工夫した点や、今後の開催時に…
分析データが個人情報にあたる? こんにちは。NRIでデータガバナンスを専門に活動しています南島と申します。 皆さんが普段分析対象としているデータに関して、これって個人情報にあたるのかな?と疑問に思われたことはありませんか。もし個人情報に該当する…
前回の振り返り パート2では多系列・時系列予測モデルを行うための、特徴量エンジニアリングを行いました。 生成された特徴量は、外生的なものだけでなく、時系列特有の要素を表現していることが重要でした。 Iterativeモデルによる多系列・時系列予測 みな…
NFT価格推定への挑戦(デジタルアートの"鑑定士"を目指して) みなさんはじめまして、NRIのデータサイエンティストからなるNFT分析チーム(眞鍋尚大、吉川龍一、平原一輝、中井亮)です。 最近、「NFT」というキーワードが話題を集めており、気になっている…
はじめに こんにちは。NRI 向後と申します。 先日、データ分析コンペサイトProbSpaceで開催された「日本画の登場人物分類」コンペティションに参加させていただき、 参加ユーザ数165名のうち1位を獲得することができました。 こちらの記事に私が取り組んだコ…
Part2 EDA and Base Model Shimpei Ikeno, Satyaki Roy, Yuta Suzuki, and Takeru Sone2022-07-12 In Part I… We introduced our approach to building a practical multivariate time series forecasting model. We introduced the data set from a past Ka…
Part1 EDA and Base Model Shimpei Ikeno, Satyaki Roy, Yuta Suzuki, and Takeru Sone2022-07-12 Purpose of This Blog Series: Introduce How to Use a Practical Multivariate Time Series Forecasting Model Welcome to our Data Science Blog! I am Shi…
NRIのデータサイエンティスト、田村です。本記事では、よく使われる相加平均と異なり、普段あまり馴染みのない「調和平均」の意味について考えてみたいと思います。 さまざまな代表値と、さまざまな平均値 世の中には様々なデータがありますが、複数のデータ…
Part2 特徴量エンジニアリング 前回の振り返り... パート1では、実践的な多変量時系列予測モデルを構築するためのアプローチを紹介し、過去のKaggleコンペティション のデータセットを用いて、ベースラインとなるSeasonal Naiveモデルを作成しました。 今回…
はじめに ~分析の組み立てメインです~ みなさま初めまして。NRIの小川と申します。 先日、データ分析コンペサイトSIGNATEにて開催された「テクノプロ・デザイン社 飛行機の航空経路の推定チャレンジ」(https://signate.jp/competitions/721)に参加し、一般…
Part1 なにはなくともEDA&ベースモデルつくりから! Shimpei Ikeno2022-07-12 本連載の目的:実践的な”多系列”時系列予測モデルの解き方を紹介 みなさんはじめまして。NRIのデータサイエンティスト、時系列予測プラクティスチームの池野です。Wikipediaによ…
こんにちは、NRIデータサイエンス 因果推論チーム(阿部泰己、井形健太郎、大島拓人、曽根建、松井拓郎、鈴木雄大)です。因果推論のビジネス上での活用方法を簡単な事例を用いてご紹介します。テーマは新型コロナウイルスによる酒の消費額の変化です。 1章 …